Alteration Products of Uraninite from the Colorado Plateau

Donggao Zhao and Rodney C. Ewing

Department of Nucl. Engin. & Radiological Sci. Department of Geological Sciences University of Michigan

Michigan Engineering

Outline

- Background
- Objectives
- Radionuclides in U⁶⁺ phases: e.g., ⁷⁹Se

- Sample petrography
- Chemical compositions
- Trace elements
- Sample localities &

 Conclusions selection

Background

- Corrosion of UO₂ in spent nuclear fuel:
 U(IV) -> U(VI)
- Incorporation of fission products and actinides into uranyl phases
 - Theoretical consideration based on crystal chemistry
 - Studies of uraninite and alteration products for confirmation

Objectives Corrosion products of natural uraninite

 Trace element contents and migration

 Confirmation of incorporation mechanisms

Coordination Geometries and Bond-Valence Distribution of Uranyl Polyhedra

(Burns, Ewing and Hawthorne, 1997, Can. Min. 35, 1551-1570)

Immobilization of fission products by incorporation into uranyl phases

Substitution for U⁶⁺

 Substitution for cations other than U⁶⁺: e.g., ⁷⁹Se

Occupation of vacancies

(Burns, Ewing and Miller, 1997, J. Nucl.Mat. 245, 1-9)

Stereo-Diagram of selenite SeO₃²⁻ and selenate SeO₄²⁻ Groups in Crystal Structures

$(SeO_4)^{2-}$ tetrahedron

One-sided coordination polyhedron of (SeO₃)²⁻ that contains three essentially co-planar anions

(Chen, Burns and Ewing, 1999, J. Nucl.Mat. in press)

⁷⁹Se: *ct*-uranophane and rutherfordine

- $(SeO_3) \leftrightarrow (SiO_3OH)$ in α -uranophane $Ca[(UO_2)(SiO_3OH)]_2(H_2O)_5$ - dominant alteration product of UO_2 in Si-rich groundwater
- $(SeO_3) \leftrightarrow (CO_3)$ in rutherfordine $(UO_2)(CO_3)$

(Chen, Burns and Ewing, 1999, J. Nucl.Mat. in press)

Michigan Engineering

Sheets of uranyl silicates in structures of α -uranophane

(Chen, Burns and Ewing, 1999, J. Nucl.Mat. in press)

Sheets in (UO₂)(SeO₃) and rutherfordine (UO₂)(CO₃) (Chen, Burns and Ewing, 1999, J. Nucl.Mat. in press)

FourComers area: 1.CarbouMine, Boulder, CO; 2.Jefferson,CO; 3.MarshallPass, Saguache,C0; 4.Happy Jack, White Canyon, B hnding, UT; 5.Grants, NM.

Samples from the Colorado Plateau

- Uranium mineralization is young: 73 to 2 Ma (Late Cretaceous to Late Tertiary)
- Both uraninite and uranyl phases identified
- In common with Yucca Mountain, i.e., relatively arid environment
- Sedimentary or hydrothermal or both in sandstone or as vein deposits

A. Concentric structure (BSE). Galena associated with a uranyl silicate. Quartz, dolomite and calcite. Gneiss host rock (# 603, Caribou Mine, Boulder, CO)

B. Concentric structure and micro-fractures (BSE), possible pattern of spent fuel corrosion. Strongly dehydrated (bright) and weakly dehydrated (grey inner part) schoepite. Metasedimentary host rock (# 637, Jefferson, CO)

60µm 400X

C. Coexisting uranophane (bright) and Ferich uranyl phase (grey). Metasedimentary host rock (# 637, Jefferson, CO) D. Concentric structure of uraninite (bright) and schoepite (grey).
Limestone host rock (# 530, Marshall Pass, Saguache, CO)


```
200µm 100X
```

D2. Concentric structure of uraninite and schoepite. A thin schoepite rim (about $10 \mu m$) is located between a massive uraninite core and a late stage uraninite crust. Limestone host rock (# 531, Marshall Pass, Saguache, CO)

200µm 100X

EMPA conditions

- Cameca CAMEBAX EMP (WDS)
- Voltage: 20 kV
- Beam: 80 nA for Pb, U, Th; 20 nA for other elements; size: 3x3 µm²
- Peak count time: 30 seconds
- Cameca PAP (modified ZAF)

Structural Formula

- $[U^{4+}_{1-x-y-z-u}U^{6+}_{x}(Th^{4+})_{u}REE^{3+}_{y}M^{2+}_{z}]O_{2+x-(0.5)y-z}$
- PbO to UO_2
- U⁴⁺ to U⁶⁺, adding oxygen
- All U⁴⁺ converted to U⁶⁺:
 - total > 100 wt %, both U⁴⁺ and U⁶⁺ exist
 - total < 100, H₂O and/or CO₂ may exist

Michigan Engineering

Uraninite UO_{2+x}

<i>Locality</i>	Marshall Pass District, CO	Happy Jack Mine, UT
\mathbf{U}^{6+}	high (0.587 to 0.808 apfu)	low (0.212 to 0.489 apfu)
0	high (2.480 to 2.727 apfu)	low (2.107 to 2.354 apfu)
Minor	Ca, Zr, Ti, Fe, Si and P	Ca, Zr, Ti, Fe, Si and P
Trace (Th & REE)	ThO ₂ 0.04 to 0.17; Y ₂ O ₃ 0.09 to 0.14 wt %	ThO ₂ b.d.l.; Y ₂ O ₃ 0.28; Nd ₂ O ₃ 0.12 wt %
Origin	similar to secondary uraninite or U ₃ O ₈	close to unaltered uraninite

Other phases

Uranium phase	Locality	Features	Host rock
schoepite [(UO ₂) ₈ O ₂ (OH) ₁₂](H ₂ O) ₁₂	Marshall Pass, CO (# 530)	associated with uraninite	limestone
schoepite $[(UO_2)_8O_2(OH)_{12}](H_2O)_{12}$	Jefferson, CO (#637)	dehydrated	metasedimentary rock
uranophane Ca(UO ₂) ₂ Si ₂ O ₇ ·6H ₂ O	Jefferson, CO (#637)	fill fractures; rich in Si and Ca	metasedimentary rock
fourmarierite PbU ₄ O ₁₃ ·6H ₂ O	Jefferson, CO (#637)	damaged by electron beam; high ZrO_2 (1.25 wt %) and TiO_2 (0.89 wt %)	metasedimentary rock
Fe-dominated uranyl phase	Jefferson, CO (#637)	UO ₂ 29.27 wt %; FeO 41.16 wt %; Zr, Ti, Si, Al and Ca	metasedimentary rock
unknown uranyl silicate (neither soddyite $(UO_2)_2SiO_4 \cdot 2H_2O$ nor uranophane Ca $(UO_2)_2Si_2O_7 \cdot 6H_2O$ (not enough Ca)	Caribou, CO (# 603)	U:Si atomic ratio of 1:1; Y ₂ O ₃ 0.9 wt %	gneiss
calciouranoite (Ca,Ba,Pb)U ₂ O ₇ ·5H ₂ O	Grants, NM (# 369)	rich in Ca	limestone

Highest average trace element contents

	uraninite	alteration product		uraninite	alteration product
ThO ₂	0.17 wt %	0.21	Sm_2O_3	0.12 wt %	0.14
Y_2O_3	0.28	0.88	Eu ₂ O ₃	0.04	0.11
La_2O_3	0.03	0.05	Gd_2O_3	0.08	0.08
Ce_2O_3	0.10	0.15	Al ₂ O ₃	0.13	1.25
Pr_2O_3	0.02	0.05	ZrO ₂	0.93	2.11
Nd_2O_3	0.14	0.18	TiO ₂	0.54	2.74

Trace element contents of coexisting uraninite and schoepite

Sample # 531	uraninite	schoepite
ZrO ₂	0.37-0.53 wt %	2.00 wt %
TiO ₂	0.20-0.29	0.42
$\mathbf{Y}_{2}\mathbf{O}_{3}$	0.11-0.14	0.15
Ce_2O_3	0.05-0.10	0.15
Nd_2O_3	0.06-0.14	0.18
Sm_2O_3	0.07-0.12	0.14
Eu_2O_3	0.01	0.14

Conclusions

- Trace element contents of uraninite are generally lower, as compared with those in secondary uranyl phases. Therefore, trace elements preferentially enter secondary phases.
- Concentric structures and micro-fractures may represent physical structure after spent fuel alteration.

Conclusions

- Two types of uraninite:
 - high U⁶⁺ (0.587 to 0.808 apfu), similar to secondary uraninite;
 - low U⁶⁺ (0.212 to 0.489 apfu), close to primary uraninite
- Two types of schoepite:

 associated with uraninite;
 different degrees of dehydration

Michigan Engineering