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[1] We investigated the impacts of vegetation and groundwater dynamics on warm season
precipitation by using the Weather Research and Forecasting (WRF) model coupled with a
modified Noah land surface model (LSM). The modified Noah LSM was augmented with
an interactive canopy model and a simple groundwater model (SIMGM). A series of
experiments performed shows that incorporating vegetation and groundwater dynamics
into the WRF model can improve the simulation of summer precipitation in the Central
United States. The enhanced model produces more precipitation in response to an increase
in the latent heat flux. The advantage of incorporating the two components into the model
becomes more discernable after 1 month. The model results suggest that the land-
atmosphere feedback is an important mechanism for summer precipitation over the Central
United States. Vegetation growth and groundwater dynamics play a significant role in
enhancing the persistence of intraseasonal precipitation in regional climate models. Their
combined effects act to favor a stronger land-atmosphere feedback during the summer
season. The simulated diurnal cycle of precipitation is improved by the WRF model with
the augmented Noah LSM. Moreover, we found that the coupling between the soil
moisture and the lifting condensation level (LCL) is enhanced by adding the two
components to the WRF model. The impact of groundwater is significant when the soil
moisture is relatively dry. This study suggests that incorporating vegetation and
groundwater dynamics into a regional climate model would be especially beneficial for
seasonal precipitation forecast in the transition zones.
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1. Introduction

[2] The predictability of precipitation on timescales of
days to years is largely limited by the effects of atmospheric
noise, which restricts weather forecasts beyond about two
weeks [e.g., Lorenz, 1963, 1969]. The hope to improve
intraseasonal to seasonal precipitation forecasts largely
relies on simulating the atmospheric response to slowly
varying states of the land surface [Beljaars et al., 1996;
Koster et al., 2004] and the ocean [e.g., Wallace et al.,
1998], which can be predicted weeks to months in advance.
In midlatitude and in the interior of those large continents
such as the North America, oceanic impact on precipitation
is small relative to that of land soil moisture as suggested by
recent studies using atmospheric general circulation models
(GCMs) [e.g., Koster and Suarez, 2000; Koster et al.,
2004; Dirmeyer, 2006]. Understanding complex interactions
between the land surface and atmosphere is central to better
predicting precipitation over land.

[3] Studies of such coupled system problems are often
conducted by using coupled land-atmosphere models. A
number of studies with the use of coupled GCMs have
shown that soil moisture is particularly important for main-
taining long-term climate and its temporal variability [e.g.,
Koster et al., 2004; Dirmeyer, 2006; Guo et al., 2006].
Koster et al. [2004] concluded that a strong coupling exists
in the transition zones between dry and wet regions such as
the Central United States (U.S.). Dirmeyer [2006] quanti-
fied the strength of the hydrologic cycle between the land
and atmosphere, and found that in the dry regions, specified
precipitation anomalies can contribute to the latent heat flux
anomalies immediately; while in the wet regions, precipita-
tion is not very sensitive to soil moisture anomalies. In the
transition zones, the soil moisture-precipitation coupling can
be best preserved, which is consistent with the work of
Koster et al. [2004]. Guo et al. [2006] revealed that differ-
ences in the coupling strengths exist among different
models, and that these differences are related to different
values of evapotranspiration (ET) simulated over land.
These studies suggest that there remain uncertainties in
representing soil moisture processes and their coupling with
other physical processes in land surface models (LSMs).
[4] Most LSMs used in the above mentioned studies did

not include an interactive vegetation canopy and a dynamic
water table. Neglecting short-term response of vegetation

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114, D06109, doi:10.1029/2008JD010756, 2009
Click
Here

for

Full
Article

1Department of Geological Sciences, John A. and Katherine G. Jackson
School of Geosciences, University of Texas, Austin, Texas, USA.

Copyright 2009 by the American Geophysical Union.
0148-0227/09/2008JD010756$09.00

D06109 1 of 15

http://dx.doi.org/10.1029/2008JD010756


greenness and leaf amounts to precipitation and temperature
may yield an underestimate or overestimate of latent heat
flux. Several studies have shown that changes in vegeta-
tion phenology can have a strong influence on regional
climate through partitioning sensible and latent heat
fluxes [Chase et al., 1996, 2000; Hoffmann and Jackson,
2000; Matsui et al., 2005; Liu et al., 2006; Wang et al.,
2006a, 2006b; Xue et al., 2006; Dekker et al., 2007;
Dong et al., 2007; Notaro et al., 2007]. Matsui et al.
[2005] applied satellite-derived vegetation greenness frac-
tion (VGF) in a regional climate model to account for the
temporal and spatial variations of vegetation distribution.
Their results showed that there was a strong link among
the evaporative fraction, surface temperature, and relative
humidity in the boundary layer. However, their results did
not reveal that a higher VGF could lead to more precip-
itation. By adding a sophisticated photosynthesis scheme
in a coupled mesoscale model, Holt et al. [2006] found
that the atmospheric model is able to better respond to
the detailed representation of soil moisture and tempera-
ture, and the model performance is improved. Kim and Wang
[2007] examined the positive soil moisture-precipitation
feedback over North America on a seasonal timescale. Their
results showed that soil moisture-induced precipitation in-
crease is enhanced under wet summer soil moisture anoma-
lies when vegetation phenology is included in their model. To
further investigate the impact of the vegetation growth on
precipitation, a better representation of vegetation growth
response to climate conditions in coupled land-atmosphere
models is needed.
[5] Like vegetation, which in turn, can feed back to

precipitation, groundwater also can respond to precipitation
rapidly. However, most LSMs traditionally ignored ground-
water dynamics. In recent years, different approaches to
incorporating groundwater dynamics into land surface pro-
cesses have been developed [e.g., Gutowski et al., 2002;
Liang et al., 2003; Yeh and Eltahir, 2005; Maxwell and
Miller, 2005; Niu et al., 2007; Fan et al., 2007; Maxwell et
al., 2007; Kollet and Maxwell, 2008; Anyah et al., 2008].
These studies incorporated groundwater processes into
LSMs and demonstrated the significant impacts of consid-
ering surface and groundwater dynamic interactions on
surface fluxes and soil moisture in land surface modeling.
Some of the approaches used in these studies [e.g., Yeh and
Eltahir, 2005; Niu et al., 2007] use the water table as the
lower boundary, while others do not [Liang et al., 2003].
Moreover, some studies even included detailed lateral flow.
Famiglietti and Wood [1994] parameterized groundwater
dynamics in a LSM using a TOPMODEL concept [Beven
and Kirkby, 1979] and found the lateral redistribution of
surface and subsurface soil water in a small-scale model is
critical in controlling both runoff production and energy
balance. Seuffert et al. [2002] examined how the incorpo-
ration of a land surface hydrologic model in a mesoscale
weather prediction model affects surface energy fluxes,
structure of the atmospheric boundary layer, and precipita-
tion. They found that a better representation of soil hydro-
logic processes improves the predicted energy fluxes and
rainfall. York et al. [2002] developed a coupled aquifer-land
surface-atmosphere model, and found that the physically
based model was able to reproduce monthly and yearly
trends in precipitation, stream discharge, and ET, for a

catchment. More recently,Maxwell et al. [2007] andMaxwell
and Kollet [2008] coupled a groundwater flow model with an
atmospheric model to examine the effects of soil moisture
heterogeneity on atmospheric boundary layer processes.
Their studies showed that the fully coupled model was able
to capture a realistic soil moisture distribution. The study of
Maxwell and Kollet [2008] also revealed that groundwater is
a key to understanding processes of recharge and drought
under a changing climate, especially in the critical zones
where the water table depth is neither very shallow nor very
deep. They found a strong correlation between the water table
depth and land surface energy. These studies all suggest the
need for a better understanding of the role of subsurface
processes in the overlying atmosphere. However, most of
these studies have been focused on relatively small (e.g.,
catchment or watershed) scales. The exception of work
includes Anyah et al. [2008] and Yuan et al. [2008], who
studied the influences of groundwater on land-atmosphere
coupling on a continental scale. Despite a large body of
research as cited above, it remains unanswered that how the
inclusion of groundwater dynamics affects precipitation in
the transition zones, as these regions are very sensitive to soil
moisture.
[6] The goal of this paper is to examine the impacts of

vegetation and groundwater dynamics on warm season
precipitation on a continental scale. We focus on the Central
U.S., which has been identified by Koster et al. [2004] as a
hot spot. The study is aimed at understanding the influences
of vegetation and groundwater dynamics on intraseasonal
precipitation in the warm season. The impacts of the two
components are investigated through application of a short-
term vegetation phenology model and a groundwater model.
In this work, we hypothesize that including vegetation growth
and groundwater dynamics in a coupled land-atmospheremodel
can improve intraseasonal to seasonal predictions of precipita-
tion and have a strong effect on the coupling between the land
and atmosphere over the Central U.S. We begin in section 2
with a brief description of the coupled land-atmosphere model
and experiments. The role of initialization in seasonal fore-
casting is taken into account through ensemble simulations. In
section 3, we evaluate the model results against available
observations and examine the roles of vegetation growth and
groundwater dynamics in precipitation and surface fluxes.
Furthermore, the impacts of these processes on diurnal cycles
of climate variables are investigated. Finally, the effects of
the new components on the relationship between soil moisture
and lifting condensation level (LCL) are examined.

2. Model Description and Experimental Design

2.1. Model Description

[7] A nonhydrostatic, fully compressible model, the
Weather Research and Forecasting (WRF) model, is used
as an investigative tool in this study [Skamarock et al.,
2005]. The model (1) includes interactive nested grid
capabilities; (2) supports various cumulus schemes, micro-
physics, shortwave and longwave radiation schemes; and
(3) includes two options of LSMs. We used WRF model
2.1.2, which contains all of the above features plus time-
varying sea surface temperature (SST) and prescribed
monthly changing VGF. These time-varying lower bound-
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ary conditions are important for monthly to seasonal climate
simulations.
[8] To assess the impacts of vegetation phenology on

warm season precipitation over the Central U.S., an inter-
active canopy model [Dickinson et al., 1998; Yang and Niu,
2003] has been coupled to the WRF model (Figure 1). The
interactive canopy model (or called dynamic vegetation
model) has two major parts: a stomatal conductance-photo-
synthesis part and a dynamic leaf part. The first part
computes carbon assimilation through photosynthesis of
both sunlit and shaded leaves following Collatz et al.
[1991]. The second part describes carbon allocation to
different vegetation components (leaf, stem, root etc.),
respiration, and vegetation phenology. A more detailed
description of this canopy model can be found in Dickinson
et al. [1998]. We added this canopy model to the Noah LSM
[Chen and Dudhia, 2001] by converting the predicted leaf
area index (LAI) to VGF using the following exponential
function:

VGF ¼ 1� exp � 2:5

6:5
LAI

� �
: ð1Þ

Following the methods used in Dickinson et al. [1998], we
parameterized water stress on conductance as a function of
soil water matric potential rather than a function of soil
moisture in the Noah LSM.

[9] We also included a simple groundwater model
(SIMGM) developed by Niu et al. [2007] in the Noah
LSM to investigate the influences of groundwater dynamics
on precipitation. As aforementioned, several previous stud-
ies have incorporated groundwater models into LSMs, and
some of them even included lateral flow [e.g., Seuffert et al.,
2002; Maxwell et al., 2007]. In this work, we did not
explicitly include the effects of lateral flow, because our
model grid spacing is coarse (�32 km). At such a coarse
grid, the vertical water exchange between soil and its
underlying unconfined aquifer is considered to be more
important than the horizontal water exchange. The soil in
the Noah LSM has four layers with a total depth of 2 m. In
the present study, SIMGM is added beneath the fourth soil
layer of Noah LSM, allowing the interaction between soil
moisture and groundwater (Figure 1). SIMGM represents
the vertical exchange of water between the bottom soil layer
and the unconfined aquifer by parameterizing the recharging
rate to the aquifer that has been added as a single integration
element below the bottom soil layer. Therefore it takes into
account not only gravitational drainage from the soil to the
aquifer when soil is relatively wet (the total water head at
the bottom soil layer is greater than that at the water table),
but also upward diffusion of water from the aquifer driven
by capillary forces when the soil is dry (the water head at
the water table is greater than that at the bottom soil layer).
The water table depth was solved by converting the water
storage in the aquifer through specific yield [Niu et al.,
2007]. In SIMGM, a simple TOPMODEL-based subsurface
runoff scheme, expressed as an exponential function of the
water table depth, was used to parameterize groundwater
discharge. To be consistent with the subsurface runoff
scheme, the surface runoff scheme was also replaced with
a simple TOPMODEL-based surface runoff scheme, which
used an exponential function of the water table depth to
represent the fractional saturated fraction [Niu et al., 2005].
The lateral transport of groundwater between grid cells and
to rivers is considered implicitly through the TOPMODEL
base flow formulation.

2.2. Experimental Design

[10] To understand the effects of vegetation and ground-
water dynamics on precipitation and their impacts on land
and atmosphere interactions, a series of ensemble numerical
experiments with each lasting three months were performed.
In all simulations, we used the Lin et al.’s microphysics
scheme [Lin et al., 1983], the Kain-Fritsch Cumulus
Parameterization scheme [Kain and Fritsch, 1990], the
Yonsei University Planetary Boundary Layer (PBL) scheme
[Hong and Pan, 1996], the Simple Cloud Interactive Radi-
ation scheme [Dudhia, 1989], the Rapid Radiative Transfer
Model Longwave Radiation scheme [Mlawer et al., 1997]
and the Noah LSM. The modeling domain covers the entire
contiguous U.S. on a 32-km horizontal grid (Figure 2). The
initial and lateral boundary conditions were derived from
the NCEP’s North American Regional Reanalysis (NARR)
data set, which has a domain covering our configured
computational area [Mesinger et al., 2006]. The NARR
data were generated at a 3-hour interval with the use of the
NCEP Eta model, its data assimilation system and a recent
version of the Noah LSM at 32 km/45 layer resolution. The
system used to generate the NARR data also includes

Figure 1. Schematic diagram of a coupled land-atmo-
sphere modeling system. A dynamic vegetation model (DV)
is incorporated into the Noah LSM, and a simple ground-
water model (SIMGM) is added beneath the Noah LSM.
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hourly assimilation of precipitation. Since the focus of this
study is on summer season, we selected June, July and
August (JJA), 2002 as our simulation period. This period is
also associated with less-than-normal precipitation in June
over the western U.S. and adjacent High Plains, and more-
than-normal precipitation in July and August over part of
Texas and the northern Great Plains. As June is relatively
dry, soil moisture may dry out in the default modeling
system, resulting in poor model performance in the ensuing
months because of the lack of the detailed subsurface
processes (e.g., groundwater system). In this case, we
expect that new improvements in the LSM could lead to
better simulations of precipitation, in particular in the
months of July and August.
[11] To test the impacts of new components, three differ-

ent experiments were performed (Table 1). The first one,
called DEFAULT, is a control run without any changes to
the Noah LSM. The Noah LSM in this modeling system
uses prescribed climatological VGF data derived from the
Normalized Difference Vegetation Index (NDVI) collected
by the NOAA-Advanced Very High Resolution Radiometer
(AVHRR) sensor. Although recent NDVI data acquired
from the Moderate Resolution Imaging Spectroradiometer
(MODIS) sensor appear to be more accurate than the
AVHRR-derived NDVI data, Gallo et al. [2004] found
16-day composite values of the two data sets over the same
time periods and a variety of land cover classes within the
contiguous U.S. are quite similar over the 23 intervals of
2001 that were analyzed. Since the purpose of incorporating
dynamic vegetation into the model is to make the model
capable of predicting vegetation growth and its interaction
with atmosphere, we used AVHRR derived climatological
VGF as experimental data in DEFAULT. Thus DEFAULT
does not allow vegetation to grow in response to climate
change. By incorporating the dynamic vegetation model
into the default Noah LSM, the second experiment (DV)
allows vegetation growth to respond to climate change. DV
investigates whether considering the vegetation-precipita-
tion feedback in the coupled model improves the forecast.
The third experiment (DVGW) implemented SIMGM to
DV to simultaneously represent vegetation growth and

water table dynamics. For each experiment, five-member
ensemble simulations for three months (JJA) were con-
structed starting from different initial dates: 00Z 31 May
2002, 06Z 31 May 2002, 12Z 31 May 2002, 18 31 May
2002 and 00Z 1 June 2002. The five members for each
experiment only differ in their starting times. While the
three modeling systems utilize the same combinations of
physical parameterization schemes such as cumulus param-
eterization scheme, they differ in the use of dynamic
vegetation and groundwater models in the Noah LSM. We
updated SSTs every six hours during the model integration.
[12] The initial values of land surface variables, especially

soil moisture exert a strong control on seasonal forecast in
regional climate models [Pielke et al., 1999]. In order to
minimize the effects of initial conditions, we used the same
sets of land surface variables in all three experiments, with
the same starting dates having the same initial conditions.
All initial values of land surface variables, except for the
water table depth and VGF, are from the NARR data set. It
should be pointed out that the modeling system employed to
produce NARR data also utilizes the Noah LSM. The initial
values of VGF required to initialize DV and DVGW are the
same as those used in DEFAULT. We also prepared initial
values of water table depth needed by the groundwater
component in the coupled model by running the offline
Noah LSM coupled with SIMGM. To do so, offline runs
were conducted from January 2000 to December 2002 and
the spin-up enabled the model to reach an equilibrium state
[Yang et al., 1995]. Then, the values of water table level on
1 June 2002 were used to initialize the water table depth and
water storage for SIMGM in the coupled model.
[13] These designed experiments allow us to better identify

the key mechanisms and processes involved in the land-
atmosphere feedback. Consequently, the differences between

Figure 2. Map showing the modeling domain in which the shaded area represents the Central United
States.

Table 1. Design of Experiments

Experiment Description

DEFAULT prescribed VGF
DV predicted VGF (or dynamic vegetation)
DVGW predicted VGF and water table depth
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DEFAULT and DV were used to evaluate the impacts of
vegetation dynamics on surface heat fluxes and precipitation.
Similarly, differences between DVand DVGW were used to
reveal the contribution of groundwater variations to vegeta-
tion phenology, surface heat fluxes and precipitation.

3. Results

3.1. Impact on Precipitation

[14] To reiterate, the objective of this work is to assess
how seasonal and intraseasonal evolution and patterns of
precipitation are influenced by the improvements in the
LSM. Although the ensemble spread is small at the begin-
ning, it becomes large afterward. To reduce the uncertainties
associated with initial conditions, the results presented
below are based on the five-member ensemble means of
different experiments. The results of the days before 1 June
have been discarded to reduce possible spin-up effects. The
model-simulated precipitation is evaluated against observed
precipitation data set (a gridded data set at 0.25� � 0.25�
resolution covering U.S. and Mexico) downloaded from the
Climate Precipitation Center (CPC [Higgins et al., 2000]).
[15] Figure 3 plots the spatial patterns of observed and

simulated seasonal precipitation (JJA) over the modeling
domain. In general, all three modeling systems reproduce
the spatial distribution of precipitation. The observed pre-

cipitation pattern for JJA (Figure 3a) is characterized by less
precipitation in the western U.S. and more precipitation in
the eastern U.S. The Central U.S., where the JJA mean
precipitation is about 1–4 mm d�1, exhibits a feature of
transition zones from the dry western U.S. to the wet eastern
U.S. Overall, DEFAULT captures the main patterns and (for
the most part) magnitudes of continental precipitation
(Figure 3b). It overestimates precipitation in much of the
eastern states (e.g., Ohio, Pennsylvania, Kentucky, Tennes-
see and South Carolina), and underestimates precipitation in
the Central U.S.. Comparing precipitation simulated by DV
against DEFAULT and observations, we found that DV
produces somewhat increased precipitation over the Central
U.S. and northern parts of North American Monsoon
regions such as New Mexico and West Texas, where rainfall
increases by nearly 1 mm d�1 (Figure 3c). The majority of
the increase in precipitation occurs over the Central U.S.
However, it should be noted that the increase in precipita-
tion in parts of the eastern U.S. is not expected, and needs
further investigation. Furthermore, as expected the impact
of inclusion of groundwater component in DV on JJA
average precipitation is extensive, covering most parts of
the continent (Figure 3d). Incorporating groundwater
dynamics into the model accounts for 1–2 mm d�1 increase
in JJA average precipitation over the Central U.S. The

Figure 3. Observed and simulated precipitation in June, July, and August (JJA) 2002 over the
contiguous United States. (a) Observed JJA precipitation from the Climate Precipitation Center (CPC)
unified precipitation data set, which is a gridded data set at 0.25� � 0.25� resolution covering the United
States and Mexico. (b) Simulated JJA precipitation in DEFAULT, which uses prescribed monthly mean
vegetation greenness fraction (VGF). (c) Simulated JJA precipitation in DV, which includes a dynamic
vegetation model, allowing the vegetation growth in response to climate conditions. (d) Simulated JJA
precipitation in DVGW, which is augmented with SIMGM and DV to represent vegetation growth and
water table dynamics.
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overestimated precipitation in the eastern U.S. is slightly
reduced, which we ascribe to the improved TOPMODEL-
based runoff scheme. Thus one can conclude that adding the
two new components to the model tends to result in a
substantial increase in precipitation over the Central U.S.,
improving the model performance. DEFAULT strongly
underestimates precipitation in this area by approximately
1 mm d�1, while DV and DVGW yield more reasonable
estimates. The overestimated precipitation over the eastern
U.S. is reduced by the modeling system with the inclusion
of new runoff schemes. Future work with the consideration
of the effects of lateral flow may further improve model
performance.
[16] A comparison of the modeled and measured cumu-

lative precipitation over the Central U.S. is shown in
Figure 4. In general, the temporal development of precip-
itation is fairly reproduced in all three experiments. We also
noticed that the three modeling systems have similar per-
formances in June. However, the precipitation amounts
simulated by the three modeling systems differ significantly
from each other in July and August, and all three modeling
systems underestimate precipitation when compared with
measurements. The performance of DEFAULT decreased
dramatically as the integration time becomes longer.
DEFAULT underestimates the JJA precipitation over the
Central U.S. by a factor of two. Lo et al. [2008] investigated
different dynamical downscaling methods and found that
the model with continuous integration tends to have a
relatively low skill in simulating long-term climate. In our
simulations, DEFAULT shows a decreasing performance in
simulating seasonal precipitation. As we incorporated the
vegetation effect into the model, the model performance in
simulating JJA precipitation is improved. Furthermore,
DVGW with the consideration of groundwater effect exhib-
its the best performance and the difference in cumulative
precipitation between DVGW and the observations is the
smallest, suggesting that SIMGM is capable of maintaining
a reasonable amount of soil moisture and ET in dry seasons
by extracting water from deep aquifers. When the soil is
drying because of ET, the soil can draw water through
capillary suction from the underlying groundwater system,

which has a longer memory of the past precipitation events
than the soil. This further suggests that the new processes in
the coupled model help to maintain reasonable soil mois-
ture. The influences of subsurface processes on precipitation
have been examined by other studies [e.g., Seuffert et al.,
2002; Bierkens and van den Hurk, 2007; Anyah et al.,
2008]. In the study of Seuffert et al. [2002], the authors
found that their model with the inclusion of lateral water
transport from one soil column to its neighbors reduces
simulated precipitation. Without the effects of lateral runoff,
their model tends to overestimate precipitation. The current
work differs from their study in several aspects including
the runoff scheme, the simulation time and the horizontal
spatial resolution. Besides, depending on the status of
available soil moisture, the impacts of groundwater could
be different in different regions. In the current study, we did
not consider the lateral water transport. In future studies,
this needs to be considered as we investigate the evolution
of precipitation. As discussed here, the effect of groundwa-
ter is more significant over the transition zone (Central
U.S.). Over the eastern U.S., the groundwater tends to
reduce overestimated precipitation to some extent, improv-
ing the model performance over that region.
[17] Figure 5 shows that the three modeling systems have

distinct behaviors in terms of simulating intraseasonal
variations of precipitation over the Central U.S. The
observed precipitation maintains approximately 2.4 mm
d�1, varying slightly from 2.2 mm d�1 in June, 2.6 mm
d�1 in July, to 2.4 mm d�1 in August. Although June
precipitation is reproduced in the three experiments, there is
a pronounced decreasing trend toward the end of the
summer season. Compared to observations in JJA, all three
modeling systems produce less precipitation, exhibiting an
excessive summer drydown. This drydown may, in part, be
due to the lack of the lateral water transport in the subsur-
face. As demonstrated in Bierkens and van den Hurk
[2007], the groundwater convergence is a possible mecha-
nism for persistence in rainfall. Therefore we expect that
when the lateral water transport is included, the model
performance may be further enhanced. Additional work is
needed to investigate the mechanisms of these feedbacks,

Figure 4. Observed versus simulated cumulative precipitation over the Central United States
(DEFAULT, DV, and DVGM are as in Figure 3).
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which is beyond the scope of this study. Further analysis
shows that the largest drying pattern (from 2.4 mm d�1 in
June to 0.6 mm d�1 in August) occurs in DEFAULT. As we
introduced vegetation phenology to the default model, the
drying trend seen in DEFAULT is significantly ameliorated,
with July rainfall at 1.7 mm d�1 and August rainfall at
0.98 mm d�1. Combined with the implementation of
groundwater model, the results are further improved, with
July rainfall at 2.1 mm d�1 and August rainfall at 1.5 mm
d�1. Clearly, including vegetation and groundwater dynam-
ics in the coupled land-atmosphere model improves the
intraseasonal (JJA) precipitation simulations (from 1.3 mm
d�1 in DEFAULT, 1.7 mm d�1 in DV, to 2.1 mm d�1 in
DVGW). The model dry bias in simulating intraseasonal
precipitation is reduced most in DVGW. It is worth men-
tioning that if we just focus on precipitation prediction at
one month lead, the advantages of adding the vegetation
growth and groundwater dynamics are not so evident.
However, if we extend the lead time to two or three months,
the advantages of using DVor DVGW become increasingly
apparent. This suggests that incorporating vegetation and
groundwater dynamics into the model can prolong the soil
moisture memory and hence maintain ET in dry seasons,
which will be discussed later.
[18] In summary, our model with the two augments

performs well in reproducing summer precipitation over
the Central U.S. in 2002. The results of precipitation
illustrate that the vegetation-atmosphere interaction can
occur on monthly timescales. The groundwater system,
which is often ignored in most climate models, does have
impacts on precipitation over the Central U.S. DEFAULT
has trouble simulating the overall magnitude of precipitation
over the Central U.S. Of significant note, the augmented
model with the new components is capable of capturing the
intraseasonal variability of precipitation.

3.2. Impact on Surface Fluxes

[19] To gain insight into the mechanism responsible for
precipitation differences among different experiments, we
plot the time series of latent heat and sensible heat fluxes
over the Central U.S. (Figure 6). Clearly, simulated latent

heat flux is lower in DEFALUT than those in DV and
DVGW. The opposite is true for sensible heat flux. This is
because soil moisture is relatively dry in the absence of
feedbacks among vegetation, groundwater and precipita-
tion. We also noticed that the variations in DEFALUT are
less pronounced than those in DV and DVGW, owing to
the lack of response to land-vegetation interactions. When
the effects of vegetation phenology included in the
model, the partitioning between the sensible and latent
heat fluxes is affected, resulting in a changed Bowen ratio
[Mölders and Rühaak, 2002]. The decrease in the Bowen
ratio induced by the vegetation dynamics could potentially
increase convection. The increase in convection could bring
out more precipitation, and then the increased precipitation
can further promote the growth of vegetation. Therefore
introducing vegetation-precipitation feedback into the model
helps to maintain an appropriate amount of ET over the
study area, and hence precipitation. As we included ground-
water component in DV, the Bowen ratio further decreased.
This can be explained that groundwater adds more water to
the dry soil, increasing the latent heat flux. Seuffert et al.
[2002] also found that their model when incorporated with a
sophisticated hydrological model could increase latent heat
flux and reduce sensible heat flux correspondingly. More-
over, an analysis of the results indicates that higher latent
heat flux in DV and DVGW corresponds to more precipi-
tation, as described above (Figure 4).
[20] Figure 7 plots the differences in monthly average

latent heat flux and precipitation between DVand DEFAULT.
A relatively large impact of vegetation growth on latent heat
flux and precipitation is particularly seen over the Central
U.S. For the most part, the plot shows that the increase in
precipitation is consistent with the increase in latent heat
flux. On average, a 20 W m�2 increase in latent heat flux
corresponds to a 0.5–1 mm d�1 increase in precipitation. As
described by Mölders and Rühaak [2002], changes in latent
heat flux (or ET) can alter surface moisture distribution and
water availability, which can affect vertical mixing, heating,
cloud and precipitation. As a result, the modeling system
with vegetation-precipitation feedback included to some
extent improves precipitation simulation through changing

Figure 5. Observed and simulated JJA and monthly mean precipitation (mm d�1) over the Central
United States.
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latent heat flux. When we added groundwater component to
the second modeling system, again, we see a 30 W m�2

increase in latent heat flux between DVGW and DV (Figure
8), which corresponds to 1 mm d�1 increase in precipitation
over this area. The effects of vegetation and groundwater are
most pronounced in July and August over the Central U.S.,
and the impacts of the two new components become more
discernible after one month.
[21] In addition to directly examining the evolution and

distribution of latent heat flux and sensible heat flux,
moisture budget calculation is another way to examine the
causes of the increase in precipitation over the Central U.S.
We calculated moisture flux convergence over the Central
U.S. using specific humidity and wind fields on the basis of
the following equations:

Qu ¼ � 1

g

Z Pt

Ps

qudp; and ð2Þ

Qv ¼ � 1

g

Z Pt

Ps

qvdp; ð3Þ

where Qu is the horizontal (east–west) component of
moisture flux in [kg m�1 s�1], Qv is the meridional (north–
south) component of moisture vapor flux in [kg m�1 s�1], q
is the specific humidity [km km�1], u is the horizontal
component of wind velocity [m s�1], v is the meridional
component of wind velocity [m s�1], p is the pressure [mb],
and g is the gravitational constant [9.81 m s�2]. The
negative sign arises due to the fact that the hydrostatic
assumption is used to convert from elevation to pressure.
The limits of integration are the surface pressure (ps) and the
pressure at the ‘‘top’’ of the atmosphere (pt). Here we define
100 mb as the top of the atmosphere in these computations.
The moisture flux convergence is calculated using the
following equation:

�r � Q ¼ � @Qu

@x
þ @Qv

@y

� �
: ð4Þ

The negative sign changes divergence to convergence,
which means when the value is negative, it is divergence;
and when it is positive, it is convergence. NARR and CPC
gauged precipitation data are used as reference data sets.

Figure 6. Comparisons of (a) simulated latent heat flux and (b) sensible heat flux over the Central
United States among three experiments.
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[22] Again, the calculated results (Table 2) show that
DEFAULT largely underestimates the JJA precipitation
by a factor of two. DV increases the JJA precipitation by
0.5 mm d�1. The difference between DVGW and the
observations is the smallest, with about 0.3 mm d�1. The
calculated ET shows that the amount of increased precipi-

tation comes from increased ET. In summer, ET is larger
than precipitation in the Central U.S. The moisture flux
convergence is divergence, suggesting moisture flows out of
this area. This result is consistent with several previous
studies [Ropelewski and Yarosh, 1998; Ruiz-Barradas and
Nigam, 2006], in which the authors found that the Central

Figure 8. As in Figure 7, but for differences between DVGW and DV.

Figure 7. Map of differences in monthly average latent heat flux (W m�2) and precipitation (mm d�1)
between DV and DEFAULT experiments. Differences were computed from ensemble simulations of DV
and DEFAULT. The domain covers the contiguous U.S. (21�N–50�N, 125�W–68�W).
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U.S. acts as a net moisture source during the summer
months and mean evaporation exceeds mean precipitation
with largest evaporation in July and August. As we dis-
cussed here, in our results, the Central U.S. does act as a net
moisture source. The increased precipitation by DVGW is
almost 65%, corresponding to 34% increase in latent heat
flux. The summer precipitation in the Central U.S. mostly
comes from local ET, showing a strong land-atmosphere
coupling in this region. The role of vegetation accounts for
almost 37% increase in precipitation in summer and the
contribution of groundwater to summer precipitation is
about 16%. We also performed one sensitivity experiment
called GW, which only accounts for groundwater effect, to
examine the contribution of groundwater dynamics. The
result shows that groundwater alone only contributes to
0.2 mm d�1 increase in the JJA precipitation. Apparently,
when we include vegetation and groundwater together in the
model, there is an interaction between them, which can
enhance the model performance.

3.3. Impact on Vegetation Greenness Fraction (VGF)

[23] Variability of vegetation can modulate surface energy
fluxes and alter the partitioning of available energy into
sensible and latent heat fluxes via the closing or opening of
stomata, VGF, LAI and vegetation types [e.g., Sud et al.,
1993; Eastman et al., 2001]. The change of wet or dry season
is tightly linked to vegetation variability. One variable often
used to represent vegetation variability and condition is

VGF. Thus one way to examine the role that dynamic
vegetation and groundwater play is to compare the simulated
VGF with observations.
[24] Because the variation of VGF is highly correlated to

NDVI, we followed the method defined by Gutman and
Ignatov [1998] to derive VGF from the MODIS NDVI data.
The MODIS NDVI data we used is a 16-day interval data
set downloaded from http://glcf.umiacs.umd.edu/data/ndvi/
[NASA, 2007]. The spatial resolution of this data set is
250 m and ArcGIS software is used to upscale the data to
model spatial resolution. The VGF is calculated according
to the following equation [Gutman and Ignatov, 1998]:

VGF ¼ NDVIi � NDVImin

NDVImax � NDVImin

; ð5Þ

where NDVImin = 0.04 and NDVImax = 0.52 are prescribed
as global constants. The analysis above illustrated the
effects of vegetation and groundwater are most pronounced
in August, we thus compared simulated August VGF over
the Central U.S. with MODIS NDVI-derived data (Figure 9).
In August, the prescribed AVHRR-derived VGF over the
Central U.S. is lower than MODIS-derived one. Incorpora-
tion of vegetation growth and groundwater dynamics in the
model increases VGF by 9%–11%, resulting in a 0.5–
1.0 mm d�1 increase in precipitation as indicated in
Figure 5. This suggests that the long-term averaged VGF
may not well represent actual vegetation conditions in
the simulation period. With the vegetation phenology
included, the modeling system is capable of maintaining
ET through vegetation-precipitation feedback. As men-
tioned in section 2.2, the year we selected to do these
experiments is wetter than normal, corresponding to higher
VGF. The default climatological VGF data used in the
models do not reflect the vegetation conditions in our
simulation period. With the additional consideration of
upward recharge from the groundwater, plants tend to
grow much better, resulting in higher VGF. Without this
effect, during the dry period, plants cannot get enough

Table 2. Water Budget Over the Central United States in June,

July, and August 2002

Variables
Precipitation
(mm d�1)

Evapotranspiration
(mm d�1)

Moisture Flux
Convergence (mm d�1)

NARR 2.3642a/2.5186 2.9907 �0.4912
DEFAULT 1.2575 2.3181 �0.8660
DV 1.7215 2.9624 �1.0313
DVGW 2.0825 3.1033 �1.2663
GW 1.4614 2.2931 �1.4180

aCPC precipitation data.

Figure 9. MODIS NDVI-derived and model simulated VGF over the Central United States in August.
The MODIS NDVI data we used is a 16-day interval data set downloaded from http://
glcf.umiacs.umd.edu/data/modis/. The VGF is calculated by following the method defined in the work
of Gutman and Ignatov [1998].
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water to generate more ET and greenness fraction. It is
very intriguing that the impacts of vegetation and
groundwater dynamics on VGF are consistent with the
impacts on latent heat flux and precipitation. Although,
most previous work shows it is very difficult to find the
positive correlation between vegetation and precipitation at
local scales [Matsui et al., 2005; Liu et al., 2006]. In our
results, the impacts of vegetation and groundwater on
vegetation condition lie in the region where there is an
increase in precipitation.

3.4. Impact on Diurnal Cycles of Precipitation
and Surface Fluxes

[25] It is of interest to explore the possible effects of
vegetation growth and groundwater dynamics on diurnal
cycles of precipitation and surface fluxes. A motivation to
look at the impacts on diurnal cycles is because most
climate and weather models cannot get diurnal cycle of
precipitation right due to the uncertainties in the convective
parameterizations, cloud physics and other land surface
parameterizations, in which the uncertainties in the land
surface model have a potential impact on this issue [Dai and
Trenberth, 2004].
[26] The diurnal cycles of surface heat fluxes, surface

temperature and precipitation simulated by three modeling

systems over the Central U.S. are evaluated against the
NARR data set. As seen from Figure 10, the effects of
vegetation and groundwater on diurnal cycles of surface
fluxes are typically from noon to early evening (local time).
When compared to the NARR data, DEFALUT overesti-
mates sensible heat flux, but underestimates latent heat flux.
When vegetation phenology considered, the model produ-
ces somewhat higher latent heat flux and lower sensible heat
flux. Changes in the surface fluxes in DV, because of
changes in vegetation conditions, further improves the
capability of the model to simulate diurnal cycles of surface
temperature and precipitation (Figures 10c and 10d). This
analysis supports the findings presented by Holt et al.
[2006] that including vegetation phenology in a coupled
model enhances the coupling between the surface and the
overlying atmosphere. As we incorporated groundwater into
DV, the modeling system further reduces sensible heat flux
and increases latent heat flux. This feature has also been
reported in other studies [e.g., Seuffert et al., 2002], where
the authors found that the model with the inclusion of
groundwater and lateral water transport increases latent heat
flux by increasing soil moisture content. It was thus
concluded that DVGW makes better estimates of surface
heat fluxes, and improves the simulations of surface tem-
perature and precipitation. In addition, the model when

Figure 10. Observed and simulated diurnal cycles of (a) sensible heat flux, (b) latent heat flux,
(c) surface temperature, and (d) precipitation over the Central United States. All variables were computed
using the 3-month (JJA) data.

D06109 JIANG ET AL.: IMPACTS OF VEGETATION AND GROUNDWATER

11 of 15

D06109



enhanced with vegetation and groundwater dynamics is
capable of simulating the later afternoon rainfall peak,
which is not well captured in the default model.
[27] The results presented here imply that when consid-

ering variation in vegetation phenology, the capability of the
model to simulate the diurnal peak is improved. Moreover,
if there is an impact of groundwater included in the model,
during the dry period, the upward recharge from ground-
water can increase precipitation throughout the whole day
and the impacts are most significant from the late afternoon
to the early morning. However, the nighttime precipitation
peak, which is clearly shown in the NARR data set, cannot
be well simulated in all experiments. The reason can be
explained that in the early morning, the dominant factor
controlling the precipitation is not mainly from the local
evaporation, the large-scale moisture transport might play
an important role in producing precipitation. Still, our
models with these two augments cannot improve the capa-
bility of the climate model to simulate synoptic scale
systems. Other improvements such as more appropriate
cloud microphysics, convective schemes are required in
regional climate models to better simulate precipitation.

3.5. Impact on Coupling Between Soil Moisture
and Lifting Condensation Level (LCL)

[28] Land-atmosphere system is a highly coupled one,
and the relationship between LCL and soil moisture index
(SMI) is suggestive of important coupling within the system
[Betts, 2007]. Some studies [Betts, 2004, 2007; Betts and
Viterbo, 2005] have found a strong link between soil
moisture and LCL in reanalysis data.
[29] To examine the coupling between the land and

atmosphere, we examined the relationship between soil
moisture and LCL using the method defined by Betts
[1997, 2007]. Estimates of the mean heights of the cloud
base and LCL in pressure coordinates were computed from
the lowest model level data using the formula below [Betts,
1997]:

PLCL=p ¼ 1� RHð Þ= Aþ A� 1ð ÞRHð Þ; ð6Þ

where p is the pressure at the lowest model level (about
1 hPa from the surface) and the thermodynamic coefficient
A = (0.622L/2CpT) is a weak function of Kelvin
temperature, T, with L being the latent heat of vaporization
and Cp the specific heat of air at constant pressure. SMI for
the first soil layer and all soil layers is defined as:

SMI ¼ SM � SWPð Þ= SMC � SWPð Þ; ð7Þ

where SM is the model soil water fraction, SWP and SMC
are the model soil permanent wilting and the soil porosity,
which depend on different types of soil texture [Betts,
2007]. As a result, SMI is not only a useful index on the
daily timescale for the availability of water for evaporation,
but it also responds to precipitation on the intraseasonal
scale. Thus the two-way interaction of soil moisture-
atmosphere coupling can be representing LCL as a function
of SMI.
[30] Figure 11 illustrates the relationship between daily

averaged LCL and SMI, in which the NARR data are used
as our reference. It is known that soil moisture, especially in

the upper layer responses directly to precipitation. The
evaporation from the land surface increases relative humid-
ity and lowers the LCL. So lower value of LCL is
corresponding to higher soil moisture index. Increased soil
moisture due to the two augments is associated with a lower
LCL and an increase in precipitation. Consistent with the
results of Mölders and Rühaak [2002], Figure 11 shows that
when vegetation phenology included in the model, the
modeled ET is affected because of redistribution of vegeta-
tion conditions or VGF. As a consequence of the altered ET,
the surface moisture distribution and water availability
differ. This can further alter vertical mixing, and affect
cloud and precipitation formation. The changed pattern
and amount of precipitation can in turn influence vegetation
conditions through affecting soil water content. As seen
here, the feedback between vegetation and atmosphere is
enhanced when vegetation dynamics is included in the
model [Holt et al., 2006]. As we added groundwater to
the model in addition to vegetation, the LCL is further
lowered for the same level of SMI. Maxwell et al. [2007]
investigated the relationship between soil moisture and the
boundary layer evolution by adding a coupled groundwater
model to an atmospheric model. Their results show a spatial
correlation between water table depth and boundary layer
height. In general, a shallower water table tends to lead to
wetter soil moisture, cooler surface temperature and hence a
lower boundary layer height. These features are also con-
sistent with the aforementioned impacts of groundwater on
surface fluxes. The impact of groundwater on soil moisture
and LCL is more significant when a soil is drier, while the
influence is relatively small when a soil becomes highly
saturated. By examining the two plots in Figure 11, one
can find that the impact of groundwater on the bottom soil
layer is more distinctive, suggesting the direct interaction
between the bottom soil layer and the groundwater system.
Over the region we are interested in, the groundwater tends
to increase soil moisture and lower LCL, resulting in an
increase in precipitation. Thus by incorporating vegetation
and groundwater dynamics in the model, the coupling
between soil moisture and precipitation is enhanced. The
result agrees well with what we found above that an
increase in precipitation over the Central U.S. is due to
local ET. The relationship between the LCL and the SMI
exhibits an improvement as we incorporated dynamic veg-
etation and groundwater in the model, which is much closer
to the NARR data.

4. Summary

[31] This paper described the applications of vegetation
and groundwater dynamics in a coupled land-atmosphere
model over the Central U.S. Several sensitivity experiments
with and without the two augments are designed to examine
the impacts of vegetation and groundwater dynamics on
warm season forecasts of precipitation. Our results show
that the model with the considerations of vegetation growth
and groundwater dynamics improves the simulations of
summer precipitation over the Central U.S. In this region,
the default model produces less precipitation in comparison
to observations. When vegetation growth is included in the
model, more precipitation is seen, as perhaps induced by
vegetation-atmosphere feedback. When we added a ground-
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water component to the model in addition to vegetation
growth, the performance of the model in simulating summer
precipitation is further enhanced, which is attributed to the
interactions among soil moisture, vegetation and ground-
water. These results also suggest that vegetation growth and
groundwater dynamics play an important role in enhancing
the persistence of seasonal precipitation in the regional
climate model. Through the analysis of the relationship
between surface fluxes and precipitation, more precipitation
generated by DV and DVGW corresponds to higher latent
heat flux and lower sensible heat flux.
[32] It is evident from the discussed Figures 1–11 and

Tables 1 and 2 that local ET is an important water vapor
source for summer precipitation over the Central U.S.,

suggesting a strong land-atmosphere coupling in this region.
Vegetation and groundwater over the Central U.S. act to
favor a stronger land-atmosphere feedback during summer
season. Detailed analyses of the simulations suggest that the
impacts of vegetation and groundwater on both energy and
water budgets are critical in determining the strength of the
feedback. It is also found that the two components have
pronounced impacts on the diurnal cycles of surface fluxes
and precipitation. The simulated diurnal cycle of precipita-
tion is improved by the augmented model with the two
components. This result may have broad implications for
the development of climate models.
[33] Finally, the coupling between soil moisture and

lifting condensation level is examined by scatterplots of

Figure 11. Daily averaged lifting condensation level (LCL) versus soil moisture index (SMI) for (a) soil
layer 1 and (b) soil layers 1–4. Estimates of the height of the LCL in pressure coordinates were computed
from the lowest model level data using the formula defined by the work of Betts [1997].
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the two variables. The impact of groundwater is significant
when the soil moisture is relatively dry. This is not surprising
since groundwater systems have a long memory. In addition,
it appears that groundwater dynamics has a larger impact on
the bottom soil layer. This result emphasizes the possible role
groundwater systems play in climate prediction. If land
surface models used in climate models lack groundwater
systems, the skill of the models might be reduced.
[34] The results presented in this study demonstrate the

feasibility of coupling climate models with dynamic repre-
sentations of vegetation growth and groundwater recharge.
However, in this work, we did not include the effects of
lateral flow, but only considered the vertical water exchange
between soil and its underlying unconfined aquifer. In
future studies, a more sophisticated physically based
three-dimension groundwater model is needed in the cou-
pled land-atmosphere model to study the feedbacks. This
study only discussed the impacts of the two components on
one summer season. Additional simulations of different
years using these two components in the coupled model
are required to gain a better sense of how the timing of the
soil moisture affected by vegetation and groundwater influ-
ences seasonal precipitation. Continued development of
fully coupled climate-vegetation-groundwater models will
facilitate the exploration of a broad range of global change
issues, including the potential roles of vegetation and
groundwater feedbacks within the climate system.
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