Laying the earth flat

Why?
- Need convenient means of measuring and comparing distances, directions, areas, shapes.
- Traditional surveying instruments measure in meters or feet, not degrees of lat. & lon.
- Globes are bulky and can’t show detail.
 - 1:24,000 globe would have diameter of ~ 13 m
 - Typical globe has scale of ~ 1:42,000,000
- Distance & area computations more complex on a sphere.

How?
- Projections – transformation of curved earth to a flat map; systematic rendering of the lat. & lon. graticule to rectangular coordinate system.

Laying the earth flat

Systematic rendering of Lat. (φ) & Lon. (λ) to cartesian (x, y) coordinates:
Laying the earth flat

- "Geographic" display – no projection
 - $x = \lambda$, $y = \phi$
 - Grid lines have same scale and spacing

"Geographic" Display

- Distance and areas distorted by varying amounts (scale not "true"); e.g. high latitudes

Projected Display

- E.g. Mercator projection:
 - $x = \lambda$
 - $y = \ln \left[\tan \left(\frac{\phi}{2} + \sec \phi \right) \right]$

How?

Projection types ("perspective" classes):

Orthographic

Gnomonic

Stereographic
Light Bulb at Center (Gnomonic)

- Grid Lines “out of focus” away from point of tangency

Gnomonic

- All great circles are straight lines
- Same as image produced by spherical lens

Orthographic

- Light source at infinity; neither area or angles are preserved, except locally

Stereographic

- Projection is conformal, preserves angles and shapes for small areas near point of tangency, larger areas away from point are distorted. Great circles are circles.
Developable Surfaces

- Surface for projection:
 - Plane (azimuthal projections)
 - Cylinder (cylindrical projections)
 - Cone (conical projections)

 Cylinder and cone produce a line of intersection (standard parallel) rather than at a point.

3 orientations for developable surfaces

- Normal
- Transverse
- Oblique

Tangent or Secant?

- Developable surfaces can be tangent at a point or line, or secant if they penetrate globe.
- Secant balances distortion over wider region.
- Secant cone & cylinder produce two standard parallels.
Projection produces distortion of:

- Distance
- Area
- Angle – bearing, direction
- Shape

Distortions vary with scale; minute for large-scale maps (e.g. 1:24,000), gross for small-scale maps (e.g. 1:5,000,000)

Goal: find a projection that minimizes distortion of *property of interest*

Where’s the distortion?

- No distortion along standard parallels, secants or point of tangency.
- For tangent projections, distortion increases away from point or line of tangency.
- For secant projections, distortion increases toward and away from standard parallels.

Distortions

Azimuthal Cylindrical Conic

How do I select a projection?

- Scale is critical – *projection type makes very little difference at large scales*
- For large regions or continents consider:
 - **Latitude of area**
 - Low latitudes – normal cylindrical
 - Middle latitudes – conical projection
 - High latitudes – normal azimuthal
 - **Extent**
 - Broad E-W area (e.g. US) – conical
 - Broad N-S area (e.g. S. America) – transverse cylindrical
 - **Theme**
 - e.g. Equal area vs. conformal (scale same in all directions)
What needs to be specified?

Geographic (unprojected)

Texas Albers (Equal Area Conic)

What needs to be specified?

Geographic (unprojected)

Texas Albers (Equal Area Conic)

Geographic (unprojected)

Texas Albers (Equal Area Conic)

What needs to be specified?

Geographic (unprojected)

Texas Albers (Equal Area Conic)

What needs to be specified?

Geographic (unprojected)

Texas Albers (Equal Area Conic)

What needs to be specified?

Geographic (unprojected)

Texas Albers (Equal Area Conic)

What needs to be specified?

Geographic (unprojected)

Texas Albers (Equal Area Conic)

What needs to be specified?

Geographic (unprojected)

Texas Albers (Equal Area Conic)

What needs to be specified?

Geographic (unprojected)

Texas Albers (Equal Area Conic)

What needs to be specified?

Geographic (unprojected)

Texas Albers (Equal Area Conic)

What needs to be specified?

Geographic (unprojected)

Texas Albers (Equal Area Conic)

What needs to be specified?

Geographic (unprojected)

Texas Albers (Equal Area Conic)

What needs to be specified?

Geographic (unprojected)

Texas Albers (Equal Area Conic)
Rectangular Coordinate Systems

- **Universal Transverse Mercator (UTM)**
 - US military developed for *global* cartesian reference frame.

- **State Plane Coordinate System (SPCS)**
 - Coordinates specific to states; used for property definitions.

- **Public Land Survey System (PLS)**
 - National system once used for property description
 - no common datum or axes, units in miles or fractional miles.

UTM Coordinate System

- T. M. secant projection is rotated about vertical axis in 6° increments to produce 60 UTM zones.

- Zone boundaries are parallel to meridians.

- Zones numbered from 180° (begins zone 1) eastward and extend from 80° S to 84° N.

- Each zone has a central meridian with a scale factor in US of 0.9996 (central meridian is farthest from secants, meaning scale distortion is greatest here).

- Secants are 1.5° on either side of the central meridian.
UTM Coordinate System

- Central meridian of each zone in US has a scale factor of 0.9996 (max. distortion).
- Secants are 1.5° on either side of the central meridian.

UTM Coordinates for central Austin:
Zone 14
621,000 mE, 3,350,000 mN

UTM Coordinate System

- Locations are given in meters from central meridian (Easting) and equator (Northing).
- Eastings avoided by giving X value of 500,000 m (“false easting”) to the Central Meridian.
- In S. hemisphere, equator is given “false northing” of 10,000,000 m to avoid (-) Northings.

State Plane Coordinate System (SPCS)

- Developed in 1930’s to provide states a reference system that was tied to national datum (NAD27); units in feet.
- Updated to NAD83, units in meters; some maps still show SPCS NAD27 coordinates.
- Some larger states are divided into “zones”.
- X, Y coordinates are given relative to origin outside of zone; false eastings and northings different for each zone.
Texas NAD83 SPCS (meters)

<table>
<thead>
<tr>
<th>Zone Code</th>
<th>Stand. Parallels</th>
<th>Origin</th>
<th>F. Easting</th>
<th>F. Northing</th>
</tr>
</thead>
<tbody>
<tr>
<td>4201</td>
<td>North</td>
<td>34.650</td>
<td>34.00</td>
<td>200,000</td>
</tr>
<tr>
<td>4202</td>
<td>N. Cent.</td>
<td>33.904</td>
<td>34.50</td>
<td>600,000</td>
</tr>
<tr>
<td>4203</td>
<td>Central</td>
<td>31.883</td>
<td>39.50</td>
<td>2,000,000</td>
</tr>
<tr>
<td>4204</td>
<td>S. Cent.</td>
<td>30.281</td>
<td>38.86</td>
<td>4,000,000</td>
</tr>
<tr>
<td>4205</td>
<td>South</td>
<td>27.833</td>
<td>25.67</td>
<td>5,000,000</td>
</tr>
</tbody>
</table>

Public Land Survey System (PLS)

- System developed to survey and apportion public lands in the US, c. 1785
- Coordinate axes are principal baselines and meridians, which are distributed among the states.
- Grid system based on miles and fractional miles from baseline and meridian origin.
- Not in Texas, nor 19 other states
- Units are miles and fractional miles; feet and yards are also in use.

Principal Baselines & Meridians

Step 1: T2S, R1W, Section 33

Step 2: Center Sec. 33

Step 3: T25, R1W, Section 33
Summary

Projections transform geographic coordinates \((\phi, \lambda)\) to cartesian \((x, y)\).

Projections distort distance, area, direction and shape to greater or lesser degrees; choose projection that minimizes the distortion of the map theme.

Points of tangency, standard parallels and secants are points or lines of no distortion.

A conformal map has the same scale in all directions.

Summary (cont.)

Modern coordinate systems are based on projections that minimize distortion within narrow, conformal zones.

UTM is a global system using WGS84/NAD83; others are local with varying datums.