The Raster Data Model

Rasters are:

- Regular square tessellations
- Matrices of values distributed among equal-sized, square cells

Why squares?

- Computer scanners and output devices use square pixels
- Bit-mapping technology/theory can be adapted from computer sciences
- 1-to-1 mapping to grid coordinate systems!
Registration to “world” coordinates

Unregistered

Registered

World File – DRG example

* 2.43840000000000
* 0.00000000000000
* 0.00000000000000
* -2.43840000000000
* 487988.64154709835000
* 3401923.72301301550000
* /* UTM Zone 14 N with NAD83
* /* This world file shifts the upper left image coordinate to the corresponding
* /* NAD83 location, resulting in an approximated NAD83 image.
* /* Map Name: Art
* /* Map Date: 1982
* /* Map Scale: 24000

Spatial Resolution

* Defined by area or dimension of each cell
 * Spatial Resolution = (cell height) \times (cell width)
 * High resolution: cell represent small area
 * Low resolution: cell represent larger area
* Defined by size of one edge of cell (e.g. “30 m DEM”)
* For fixed area, file size increases with resolution
30 m vs. ~90 m pixel size

- Resolution of 30 m data is 9 times better than 90 m data

Resolution constraint

- Cell size should be less than half of the size of the smallest object to be represented ("Minimum mapping unit; MMU")

Raster Dimension:

- Number of rows x columns
 - E.g. Monitor with 1900 x 1200 pixels

<table>
<thead>
<tr>
<th>Dimension</th>
<th>565</th>
<th>573</th>
<th>582</th>
<th>590</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>575</td>
<td>580</td>
<td>595</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>579</td>
<td>581</td>
<td>597</td>
<td>601</td>
</tr>
<tr>
<td></td>
<td>580</td>
<td>600</td>
<td>620</td>
<td>632</td>
</tr>
</tbody>
</table>
Raster Attributes

1. **Integer codes** assigned to raster cells
 - E.g. rock type, land use, vegetation
 - Codes are technically *nominal* or *ordinal* data
2. Measured *real* values
 - Can be integer or “floating-point” (decimal) values; technically *interval* or *ratio* data
 - E.g. topography, ems spectrum, temperature, rainfall, concentration of a chemical element

Mixed Pixel Problem

- Severity is resolution dependant
- Rules to assign mixed pixels include:
 - “edge pixels”: not assigned to any feature– define a new class
 - Assign to feature that comprises most of pixel

Integer Code Attributes

- Code is referenced to attribute via a “look-up table” or “value attribute table” – VAT
- Commonly many cells with the same code
- Different attributes must be stored in different raster layers

![VAT Table]

<table>
<thead>
<tr>
<th>Value</th>
<th>Count</th>
<th>Rock Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>21</td>
<td>Marble</td>
</tr>
<tr>
<td>5</td>
<td>37</td>
<td>Gneiss</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>Granite</td>
</tr>
</tbody>
</table>

Coded Value Raster Types

- **Single-band: Thematic data**
 - **Black & White**: binary (1 bit) (0 = black, 1 = white)
 - **Panchromatic** (“Grayscale”) (8 bit): 0 (black) – 255 (white) or graduated color ramps (e.g. blue to red, light to dark red)
 - **Colormaps** (“Indexed Color”) (8 bit): code cells by values that match prescribed R-G-B combinations in a lookup table

![B&W Panchromatic Color Map]

Figures from: Modeling our World, ESRI press.
Single Band Examples – Black & White (Grayscale)

Black & White - 1 bit

Grayscale – 8 bit; black, white & 254 shades of gray

Single Band Example Color Map (Indexed Color)

E.g. Austin East 7.5’ Digital Raster Graph

Each pixel contains one of 12 unique values, each corresponding to a prescribed color (Red, Green & Blue combination)

Measured, “Real Value” Attributes

- Commonly stored as floating point values
- Different attributes must be stored in different layers, e.g. spectral bands in satellite imagery
- Compression techniques for rasters of integer-valued cells, but not floating point (see below)

Multiband Image Raster Attributes

- Multi-band Spectral Data
- Band = segment of Em spectrum
- Map intensities of each band as red, green or blue.
- Display alone or as composite

Figures from: Modeling our World, ESRI press
Multiband Image
8 bits/Band, 3 Band RGB

E.g. Austin East 7.5' Color Infrared Digital Orthophotograph ("CIR DOQ")

Cell values apply to:

- Middle of cell, e.g. Digital Elevation Models (DEM)
- Whole cell, e.g. most other data

Source: Modeling our World, ESRI press

Digital Elevation Model

Airborn Magnetic (TFI) Map

Source: Modeling our World, ESRI press
How are rasters projected?

- Problem: Square cells must remain square after projection.
- Solution: Resampling (interpolation); add, remove, reassign cells to conform to new spatial reference.

Raster File Size

- **Fixed by dimension, not information**

File Structure

- **File Size** = Rows x columns x bit-depth

- Bit depth: number of bits used to represent pixel value
 - “8-bit” data can represent 256 values (2^8)
 - “16-bit” data (2^16) allows 65,536 values
 - “32-bit” data allows ~4.3 billion values

Header: (dimension, max. cell value) + resolution, coordinate of one corner pixel, etc.
File Compression

E.g. Run-length encoding

<table>
<thead>
<tr>
<th>Row</th>
<th>Run</th>
<th>Freq., Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,1</td>
<td>8,5</td>
</tr>
<tr>
<td>2</td>
<td>2,3</td>
<td>4,5</td>
</tr>
<tr>
<td>3</td>
<td>3,3</td>
<td>4,5</td>
</tr>
<tr>
<td>4</td>
<td>4,3</td>
<td>4,5</td>
</tr>
<tr>
<td>2</td>
<td>5,2</td>
<td>4,5</td>
</tr>
<tr>
<td>6</td>
<td>6,2</td>
<td>4,5</td>
</tr>
<tr>
<td>2</td>
<td>7,2</td>
<td>4,5</td>
</tr>
<tr>
<td>2</td>
<td>8,3</td>
<td>4,5</td>
</tr>
</tbody>
</table>

Before: 64 characters
After: 46 characters
(28% reduction; ratio of 1.4:1)

File Compression

E.g. Block encoding

<table>
<thead>
<tr>
<th>Block</th>
<th>Size</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>5,1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>7,5</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3,5</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4,5</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>5,1</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>5,1</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>5,6</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>5,1</td>
</tr>
</tbody>
</table>

Before: 64 characters
After: 61 characters
(5% reduction ratio of 1.05:1)

MrSID or ECW (wavelet) compression

- Multi-resolution Seamless Image Database – commercialized by LizardTech
- Compression ratios of 15-20:1 for single band 8-bit images
- Ratios of 2-100:1 (!) for multiband color images
- Also ECW by ER Mapper Ltd. (now Intergraph/ERDAS)

*** Enormous raster data sets now manageable on PCs and across web with this technology ***

“Lossy” vs. Lossless Compression

- Techniques that combine similar attribute information to reduce file size are “lossy” e.g. JPEG, GIF, PNG, MrSID
- Lossless formats; TIFF, BMP, GRID
Raster Pyramids

- Store reduced-resolution copies of a raster for rapid display – e.g. ArcGIS, Google, many others
- Often combined with image tiling for rapid rendering of images

Image “Tiling”

- Split raster into small contiguous rectangles or squares = tiles
- Display only the tile required upon zooming

Supported Raster Formats

- See ArcCatalog>Tools>Options
- Each explained in Help
- 24 supported formats
Vector or Raster?

- Spatially continuous data = raster
- Modeling of data with high degree of variability = raster
- Objects with well defined boundaries = vector
- Geographic precision & accuracy = vector
- Topological dependencies = vector or raster

Raster or Vector?

- **Raster**
 - Simple data structure
 - Ease of analytical operation
 - Format for scanned or sensed data - easy, cheap data entry
 - But......
 - Less compact
 - Query-based analysis difficult
 - Coarser graphics
 - More difficult to transform & project

- **Vector**
 - Compact data structure
 - Efficient topology
 - Sharper graphics
 - Object-orientation better for some modeling
 - But.....
 - More complex data structure
 - Overlay operations computationally intensive
 - Not good for data with high degree of spatial variability
 - Slow data entry