Databases

Managing Data for Retrieval, Update, & Calculation

<table>
<thead>
<tr>
<th>Drilling Record</th>
<th>Production (barrels/day, cfs)</th>
<th>1997 Expenditures (millions of $s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Name</td>
<td>Spudded</td>
</tr>
<tr>
<td>40</td>
<td>Exxon #1</td>
<td>2/4/96</td>
</tr>
<tr>
<td>43</td>
<td>Shell #5</td>
<td>3/14/97</td>
</tr>
</tbody>
</table>
GIS Data Recap

Two data types:

- **Spatial** – *Where* things are, in \((x, y, \lambda, \phi)\)
 - Stored in coordinate files & topology *tables*
 - Vector (Object) Model
 - Raster (Field) Model

- **Aspatial** - *What* things are
 - stored in *tables* of attributes
GIS = Lots and Lots of Tabular Data

How will it be managed?
- Data Model Considerations
- Analysis Considerations
- Data Entry Considerations
- Security
- Efficiency
HOW?

 Goals:

 - Maximize flexibility for sorting, reordering, subsetting, searching
 - Efficient storage; *eliminate redundancy*
 - Secure entry and retrieval mechanisms
 - Rapid retrieval

 Solution:

 Database Management System (DBMS)
Database display in ArcMap

- Displayed in tables with rows of *records* (tuples) and columns of *fields* (attributes)
Accuracy

• Data entry can be accomplished via *forms* that require:

 o *Data definitions* – #s of attributes, the types and lengths or numerical ranges of each attribute, and how much editing will be permitted.

 o *Data Dictionary* - catalog of attributes with their permitted values and ranges (“Domains”).

 o *Validation Rules* - ensure data integrity.
Data Definition: Field “Types”

Field type - Q: how much space does a database need to reserve for each field?

A: no more than 10 characters
Fields are “defined” by:

- **Name** – attribute (column heading)
- **Field Type** – number (long, short, float, double), text (“string”), or date
- **Length** – no. of characters in text
- **Precision** – no. of digits used to store numbers
- **Scale** – no. of digits to right of decimal point

Field Definitions

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Length</th>
<th>Precision</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FID</td>
<td>Object ID</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Shape</td>
<td>Point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDNUMBER</td>
<td>String</td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PIT_TYPE</td>
<td>String</td>
<td>21</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>STATUS</td>
<td>String</td>
<td>21</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PARISH</td>
<td>String</td>
<td>21</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CONTAINMT</td>
<td>String</td>
<td>51</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CONT_COND</td>
<td>String</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BREACHED</td>
<td>String</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RANKING</td>
<td>Long</td>
<td>6</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>
Fields Types in ArcGIS

- Short Integer – 1 to 4 digits (no decimal)
- Long Integer = 5 to 9 digits (no decimal)
- Float = 1 – 8 digits, decimal (short real)
- Double = 6 – 19 digits, decimal (long real)
- Text = 1 – 255 characters
- Date = 8 character
- Blob = binary large object
Numeric Field Types

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Storage</th>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short Integer</td>
<td>2 bytes</td>
<td>+/- 32,768</td>
<td>Used for coding, e.g. lulc, veg. types, T/F</td>
</tr>
<tr>
<td>Long Integer</td>
<td>4 bytes</td>
<td>+/- 2.14 billion</td>
<td>Large whole numbers, e.g. populations</td>
</tr>
<tr>
<td>Float</td>
<td>4 bytes</td>
<td>+/- 3.4 x E38</td>
<td>Single-precision, up to 6 places past the decimal. Up to 6 total numbers.</td>
</tr>
<tr>
<td>Double</td>
<td>8 bytes</td>
<td>~ +/- 1.8 x E308</td>
<td>Double-precision; 15 places past decimal, 6-19 total numbers.</td>
</tr>
</tbody>
</table>
Field Properties

- **Precision** = number of digits stored in a field. Precision 7 for double, 1-6 for float

- **Scale** = no. of decimal places in double and float

- E.g. 3500426.21 should be stored as double, precision >9, scale > 2
Numeric Field Properties

- Short and Long integers fields:
 Precision = 4
 8,400

- Float and Double data fields:
 Precision = 9
 8,400.08347
 Scale = 5
File Size Comparison, Text Fields

<table>
<thead>
<tr>
<th>Text Field length</th>
<th>100 records</th>
<th>1000 records</th>
<th>10,000 records</th>
<th>100,000 records</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.2 Kb</td>
<td>1.95 Kb</td>
<td>19.53 Kb</td>
<td>195.3 Kb</td>
</tr>
<tr>
<td>50 (default)</td>
<td>4.88 Kb</td>
<td>48.83 Kb</td>
<td>488.3 Kb</td>
<td>4.88 Mb</td>
</tr>
</tbody>
</table>
Accuracy

Data entry can be accomplished via *forms* that require:

- **Data definitions** – #s of attributes, the types and lengths or numerical ranges of each attribute, and how much editing will be permitted.
- **Data Dictionary** - catalog of attributes with their permitted values and ranges (“Domains”).
- **Validation Rules** - ensure data integrity.
Data Dictionary: Domains

• Permitted attribute values or range of values for a field:
 o E.g. dip of bedding: permissible range from 0-90°
 o E.g. type of geologic contact: permissibly covered, inferred, exposed
 o E.g. rock type: permissibly sandstone, shale, limestone
Domains in a Geodatabase

Geodatabase Domains

Domain Values

Domain applied to Contacts05

Contacts05 Feature Class Fields

Feature Class Properties

Field Name	Data Type
Digitize | Text
Instrument | Text
Software | Text
Contact | Text
Line_Type | Text
Comment | Text
Geologist | Text

Coded Values:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Dashed</td>
</tr>
<tr>
<td>02</td>
<td>Solid</td>
</tr>
<tr>
<td>03</td>
<td>Dotted</td>
</tr>
</tbody>
</table>

Database Properties

Domain Name	Description
Contact_type | Solid or Dashed Contact
Date_1 | When Acquired
Date_2 | When Acquired
Digitize | Digitizing technique
Dip_Plunge | Inclination of Plane or Line
Geologist | Data Collector
A DBMS provides:

✓ Accuracy - reduce errors during entry by use of established rules, templates

• **Efficiency** - rapid access & retrieval, no redundancy

• Flexibility - robust structure for query – e.g. What is where?

• Security – access and use can’t corrupt data

• Easy updating
Efficiency (\pm Flexibility)

- Relies on database structure (data model):
 - Hierarchical
 - Network
 - Relational
 - Object-oriented
GIS attribute data models

- Hierarchical – pre-1980

- Relational – 1980’s, 1990’s; still dominant today

- Object-oriented – late ’90’s; newest, implemented by some GISs – still undergoing R&D
Hierarchical Structure

E.g. Filing cabinet or folders on a hard drive

- File address for storage and retrieval is a **linear path**, e.g.

C:\ESRI\ESRIDATA\CANADA\cities.shp
Hierarchical Structure

- University
 - ORUs
 - Colleges
 - Administration
 - Departments
 - Allied Units
 - Graduate Students
 - Undergraduate Students
Hierarchical - Limitations

1. Linear structure can’t deal with multiple “memberships”
 - E.g. a single well might be stored many times in different databases for taxes, production, drilling history, water quality, etc.

 INEFFICIENT

 - Can’t assemble all this data for query in a hierarchical database
Hierarchical - Limitations

2. Can’t deal with exceptions to linear scheme – entities may not belong to next higher class but could instead contain it.

E.g. Structure Oil Well Database by:

State
County
Oil Field
Well
Pay zone

What do we do with a oil field that spans several counties with wells that produces from more than one pay zone?

cents: i.e. No “one-to-many” relationships
Relational Database advantages

- Data stored in separate files
 - Easy update, editing, searching without affecting or using all data
- Flexibility
 - Using “key” fields, can extract and assemble records and attributes to form new tables
 - Subsets of database can be queried by standard means - SQL
Relational Database Structure

- Consists of “relations” (tables) with multiple attributes (columns, fields) per record
- Every record (row) has a unique identifier (marker or key attribute)
 - Key is the glue between files that can be used to extract and/or assemble records and attributes
Parts of a Relation

A relation consists of:

- **Primary Key**
- **Record or tuple**
- **Attribute or field**

<table>
<thead>
<tr>
<th>Production (barrels/day, cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>55</td>
</tr>
</tbody>
</table>
Properties of Relations

- Each row has to be unique; no row-to-row dependency
- Row order irrelevant
- Column order irrelevant
- All attribute values must be stored in separate rows ("first normal form")
Drilling Record

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Spudded</th>
<th>Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>Exxon #1</td>
<td>2/4/96</td>
<td>6/3/96</td>
</tr>
<tr>
<td>43</td>
<td>Shell #5</td>
<td>3/14/97</td>
<td>6/12/96</td>
</tr>
</tbody>
</table>

> "Key" Field = ID

1997 Expenditures (millions of $s)

<table>
<thead>
<tr>
<th>ID</th>
<th>Drilling</th>
<th>Production</th>
<th>Transport.</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>1.501</td>
<td>0.652</td>
<td>0.078</td>
</tr>
<tr>
<td>72</td>
<td>5.522</td>
<td>0.301</td>
<td>0.055</td>
</tr>
</tbody>
</table>

Production (barrels/day, cfs)

<table>
<thead>
<tr>
<th>ID</th>
<th>Oil</th>
<th>Gas</th>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>53</td>
<td>1200</td>
<td>5</td>
</tr>
<tr>
<td>43</td>
<td>108</td>
<td>2500</td>
<td>15</td>
</tr>
</tbody>
</table>
One-to-One Table “Join”

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Spudded</th>
<th>Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>Exxon #1</td>
<td>2/4/96</td>
<td>6/3/96</td>
</tr>
<tr>
<td>43</td>
<td>Shell #5</td>
<td>3/14/97</td>
<td>6/12/96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>Oil</th>
<th>Gas</th>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>53</td>
<td>1200</td>
<td>5</td>
</tr>
<tr>
<td>43</td>
<td>108</td>
<td>2500</td>
<td>15</td>
</tr>
</tbody>
</table>

One record from source table (production) is joined to one record of destination table (drilling record) to create a “View” – virtual combination.
Result of One-to-One Table “Join”

Joined Production and Drilling Record tables:

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Spudded</th>
<th>Completed</th>
<th>Oil</th>
<th>Gas</th>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>Exxon #1</td>
<td>2/4/96</td>
<td>6/3/96</td>
<td>53</td>
<td>1200</td>
<td>5</td>
</tr>
<tr>
<td>43</td>
<td>Shell #5</td>
<td>3/14/97</td>
<td>6/12/96</td>
<td>108</td>
<td>2500</td>
<td>15</td>
</tr>
</tbody>
</table>

View can’t be edited – destination table can be
One-to-Many Join

A one-to-many join occurs when one record from the source table is matched with many records from the destination table. This type of join is commonly used in database management systems to combine data from different tables based on a common attribute.

Drilling Record Table

<table>
<thead>
<tr>
<th>ID</th>
<th>Well Name</th>
<th>Spudded</th>
<th>Completed</th>
<th>Field_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>Exxon #1</td>
<td>2/4/96</td>
<td>6/3/96</td>
<td>2</td>
</tr>
<tr>
<td>43</td>
<td>Shell #5</td>
<td>3/14/95</td>
<td>6/12/96</td>
<td>2</td>
</tr>
<tr>
<td>72</td>
<td>Amoco #3</td>
<td>4/8/88</td>
<td>4/8/89</td>
<td>2</td>
</tr>
<tr>
<td>55</td>
<td>BP #2</td>
<td>6/8/90</td>
<td>8/8/91</td>
<td>Wildcat</td>
</tr>
</tbody>
</table>

Oil/Gas Fields Table

<table>
<thead>
<tr>
<th>Field_ID</th>
<th>Name</th>
<th>Discovered</th>
<th>Total_Oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Longview</td>
<td>1/20/56</td>
<td>13000564</td>
</tr>
<tr>
<td>2</td>
<td>Katy</td>
<td>2/3/48</td>
<td>85640</td>
</tr>
<tr>
<td>3</td>
<td>Anhuac</td>
<td>4/11/73</td>
<td>3587889</td>
</tr>
</tbody>
</table>

One record from source table joined to many records of destination table
One-to-Many Join Result

Table of Wells in Katy Field

<table>
<thead>
<tr>
<th>Drilling Record</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Name</td>
<td>Spudded</td>
<td>Completed</td>
<td>Field_ID</td>
<td>Name</td>
<td>Discovered</td>
<td>Total_Oil</td>
</tr>
<tr>
<td>40</td>
<td>Exxon #1</td>
<td>2/4/96</td>
<td>6/3/96</td>
<td>2</td>
<td>Katy</td>
<td>2/3/48</td>
<td>85640</td>
</tr>
<tr>
<td>43</td>
<td>Shell #5</td>
<td>3/14/95</td>
<td>6/12/96</td>
<td>2</td>
<td>Katy</td>
<td>2/3/48</td>
<td>85640</td>
</tr>
<tr>
<td>55</td>
<td>BP #2</td>
<td>6/8/90</td>
<td>8/8/91</td>
<td>Wildcat</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that “Discovered” and “Total_Oil” fields in joined table pertain to Katy Field, not to individual wells! This is a could be a problem...
Many-to-Many Join example – USGS DLGs

- Join “lookup table” with feature codes tables to obtain feature descriptions
 - Feature descriptions stored once, used many times
 - Primary key is feature code
Digital Line Graph Example

Lookup Table

Key

Hydrography feature attributes
Result of Many-to-Many Join

- Symbolize on joined field (FEAT_DESC)

Layer = Condrey_HY
A DBMS provides:

✓ Accuracy - reduce errors during entry by use of established rules, templates
✓ Efficiency - rapid access & retrieval, no redundancy

• **Flexibility** - robust structure for query – e.g. What is where?
• Security – access and use can’t corrupt data
• Easy updating
Flexibility

- Using primary key(s), can extract and assemble records and attributes to form new tables, as discussed

- Subsets of database can be queried by standard means - SQL
ArcMap Query Builder

* E.g. Find all cities in Louisiana where 1990 population exceeded 72,033
Relational DBMSs Permit:

- File updating
- Data retrieval via query using a standard language (SQL)
- Sorting (reordering) by field values
- Calculations and field statistics
- Report generation
- Multi-user access
Reordering In ArcMap

1. Order selected records by sorting
 ✱ ascending or descending field values
2. Sort records by selected attributes

Unsorted

Sorted by “Azimuth”
Field Statistics In ArcMap

- Get stats. & graphs on selected attributes

Statistics for “Azimuth”

Histogram for “Dip”
GIS’ are Spatial Databases

- Coverage and Shapefile models
 - Spatial information stored in spatial attribute files, attributes in relational database table
 - Feature ID is key
 - Spatial information can’t participate in relational database advantages

- Geodatabase model
 - All information, spatial and aspatial, are stored together in a relational database